SimplyCNP

This is auto-generated documentation based on the model code in models/simplycnp_model.txt . Since the modules can be dynamically loaded with different arguments, this documentation does not necessarily reflect all use cases of the modules.

See the note on notation.

The file was generated at 2024-11-12 13:40:23.


SimplyQ land

Version: 0.5.0

File: modules/simplyq.txt

Description

This is an adaption of a hydrology module originally implemented in Python as a part of the model SimplyP, which was published as

Jackson-Blake LA, Sample JE, Wade AJ, Helliwell RC, Skeffington RA. 2017. Are our dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P. Water Resources Research, 53, 5382–5399. doi:10.1002/2016WR020132

New to version 0.5 :

  • New implementation in the Mobius2 framework.

Authors: James E. Sample, Leah A. Jackson-Blake, Magnus D. Norling

External symbols

Name Symbol Type
Soil soil compartment
Groundwater gw compartment
River river compartment
  runoff_target loc
Water water quantity
Flow flow property
Potential evapotranspiration pet property
Catchment area a_catch par_real
  gw_target loc

Parameters

Name Symbol Unit Description
Hydrology general      
Baseflow index bfi    
Quick flow inflection point qqinfl mm day⁻¹  
Hydrology land     Distributes like: soil
Field capacity fc mm  
Soil water time constant tc_s day  
Groundwater     Distributes like: gw
Groundwater time constant tc_g day  
Groundwater retention volume gw_ret mm  

State variables

Soil water volume

Location: soil.water

Unit: mm

Initial value:

\[\mathrm{fc}\]

Groundwater volume

Location: gw.water

Unit: mm

Initial value:

\[\mathrm{gw\_ret}+\left(\mathrm{tc\_g}\cdot \frac{\mathrm{river}.\mathrm{water}.\mathrm{flow}}{\mathrm{a\_catch}}\rightarrow \mathrm{mm}\,\right)\]

Soil water flow

Location: soil.water.flow

Unit: mm day⁻¹

Value:

\[\mathrm{rate} = \frac{\mathrm{water}-\mathrm{fc}}{\mathrm{tc\_s}} \\ \href{stdlib.html#response}{\mathrm{s\_response}}\left(\mathrm{water},\, \mathrm{fc},\, 1.01\cdot \mathrm{fc},\, 0,\, \mathrm{rate}\right)\]

Fluxes

Quick flow

Source: soil.water

Target: river.water

Unit: mm day⁻¹

Value:

\[\mathrm{drylim} = 0.9 \\ \mathrm{q\_in} = \left(\mathrm{in\_flux}\left(\mathrm{water}\right)\rightarrow \mathrm{mm}\,\mathrm{day}^{-1}\,\right) \\ \mathrm{q\_in}\cdot \href{stdlib.html#response}{\mathrm{s\_response}}\left(\mathrm{water},\, \mathrm{drylim}\cdot \mathrm{fc},\, \mathrm{fc},\, 0,\, 1\right)\cdot \mathrm{atan}\left(\frac{\mathrm{q\_in}}{\mathrm{qqinfl}}\right)\cdot \frac{2}{\pi}\]

Evapotranspiration

Source: soil.water

Target: out

Unit: mm day⁻¹

Value:

\[\href{stdlib.html#response}{\mathrm{s\_response}}\left(\mathrm{water},\, 0.5\cdot \mathrm{fc},\, \mathrm{fc},\, 0,\, \mathrm{pet}\right)\]

Soil runoff

Source: soil.water

Target: runoff_target

Unit: mm day⁻¹

Value:

\[\mathrm{flow}\cdot \left(1-\mathrm{bfi}\right)\]

Recharge

Source: soil.water

Target: gw.water

Unit: mm day⁻¹

Value:

\[\mathrm{flow}\cdot \mathrm{bfi}\]

Groundwater runoff

Source: gw.water

Target: gw_target

Unit: mm day⁻¹

Value:

\[\frac{\mathrm{max}\left(0,\, \mathrm{water}-\mathrm{gw\_ret}\right)}{\mathrm{tc\_g}}\]

SimplyQ river

Version: 0.5.0

File: modules/simplyq.txt

Description

The river part of SimplyQ.

Authors: Leah A. Jackson-Blake, Magnus D. Norling

External symbols

Name Symbol Type
River river compartment
Water water quantity
Flow flow property
  river_target loc

Parameters

Name Symbol Unit Description
Reach parameters     Distributes like: river
Reach slope slope   Roughly the altitude difference between the uppermost and lowermost points divided by the length
Reach length len m  
Manning’s roughness coefficient c_mann s m⁻¹′³ Default of 0.04 is for clean winding natural channels. See e.g. Chow 1959 for a table of values for other channel types
Initial reach flow init_flow m³ s⁻¹  

State variables

Reach water volume

Location: river.water

Unit: m³

Initial value:

\[\mathrm{q} = \left(\mathrm{init\_flow}\Rightarrow 1\right) \\ \mathrm{depth} = 0.349 \mathrm{m}\,\cdot \mathrm{q}^{0.34} \\ \mathrm{width} = 2.71 \mathrm{m}\,\cdot \mathrm{q}^{0.557} \\ \mathrm{width}\cdot \mathrm{depth}\cdot \mathrm{len}\]

Reach flow

Location: river.water.flow

Unit: m³ s⁻¹

Value:

\[0.28 \mathrm{m}^{3}\,\mathrm{s}^{-1}\,\cdot \left(\mathrm{water}\cdot \frac{\sqrt{\mathrm{slope}}}{\mathrm{len}\cdot \mathrm{c\_mann}}\Rightarrow 1\right)^{1.5}\]

Initial value:

\[\mathrm{init\_flow}\]

Fluxes

Reach flow flux

Source: river.water

Target: river_target

Unit: m³ s⁻¹

Value:

\[\left(\mathrm{flow}\rightarrow \mathrm{m}^{3}\,\mathrm{s}^{-1}\,\right)\]

SimplyC land

Version: 1.0.1

File: modules/simplyc.txt

Description

This is a simple dissolved organic carbon (DOC) model that has as its main assumption that temperature and SO4 deposition are the strongest drivers for soil water DOC concentration.

The main purpose of the module is to predict DOC transport from land to river. The module does not keep track of the soil organic carbon pool as a whole, and so long-term changes in soil carbon availability are not taken into account, neither are effects from vegetation disturbance.

The user can configure the soil DOC concentration to either be constant, at a (temperature- and SO4-dependent) equilibrium, or always tending toward that equilibrium with a speed set by the cdoc parameter. In the latter case, influx of clean water (precipitation or snow melt) will dilute the soil water DOC concentration for a while before it again reaches equilibrium.

The ground water DOC concentration can be set to either be constant, equal to the average of the soil water DOC concentration, or follow mass balance (transport with recharge and runoff). In the latter case, the groundwater DOC decays with a user-set half life.

Authors: Magnus D. Norling, Leah A. Jackson-Blake

External symbols

Name Symbol Type
Atmosphere air compartment
Soil soil compartment
Groundwater gw compartment
Water water quantity
Organic carbon oc quantity
Temperature temp property

Parameters

Name Symbol Unit Description
DOC general      
Soil temperature DOC creation linear coefficient kt1 °C⁻¹  
Soil temperature DOC creation second-order coefficient kt2 °C⁻²  
Soil DOC linear SO4 dependence kso4 l mg⁻¹  
Baseline soil DOC dissolution rate cdoc mg l⁻¹ day⁻¹ Only used if the soil DOC computation type is dynamic.
Soil DOC computation type soildoc_type Possible values: const, equilibrium, dynamic  
Groundwater DOC computation type gwdoc_type Possible values: const, soil_avg, mass_bal  
DOC land     Distributes like: soil
Baseline soil DOC concentration basedoc mg l⁻¹ Soil water equilibrium DOC concentration when temperature is 0°C and there is no SO4.
DOC deep soil     Distributes like: gw
Groundwater DOC half-life gwdochl day Half life of decay rate if groundwater DOC follows mass balance.
Groundwater DOC concentration gwdocconc mg l⁻¹ Concentration if groundwater DOC is set to be constant.

State variables

SO4 deposition

Location: air.so4

Unit: mg l⁻¹

This series is externally defined. It may be an input series.

Soil water DOC

Location: soil.water.oc

Unit: kg km⁻²

Conc. unit: mg l⁻¹

Value (concentration):

\[\begin{cases}\mathrm{basedoc} & \text{if}\;\mathrm{soildoc\_type}.\mathrm{const} \\ \mathrm{basedoc}\cdot \left(1+\left(\mathrm{kt1}+\mathrm{kt2}\cdot \mathrm{temp}\right)\cdot \mathrm{temp}-\mathrm{kso4}\cdot \mathrm{air}.\mathrm{so4}\right) & \text{if}\;\mathrm{soildoc\_type}.\mathrm{equilibrium} \\ \text{(mass balance)} & \text{otherwise}\end{cases}\]

Initial value (concentration):

\[\mathrm{basedoc}\]

Deep soil DOC

Location: gw.water.oc

Unit: kg km⁻²

Conc. unit: mg l⁻¹

Value (concentration):

\[\begin{cases}\mathrm{gwdocconc} & \text{if}\;\mathrm{gwdoc\_type}.\mathrm{const} \\ \mathrm{aggregate}\left(\mathrm{conc}\left(\mathrm{soil}.\mathrm{water}.\mathrm{oc}\right)\right) & \text{if}\;\mathrm{gwdoc\_type}.\mathrm{soil\_avg} \\ \text{(mass balance)} & \text{otherwise}\end{cases}\]

Initial value (concentration):

\[\begin{cases}\mathrm{gwdocconc} & \text{if}\;\mathrm{gwdoc\_type}.\mathrm{const}\;\text{or}\;\mathrm{gwdoc\_type}.\mathrm{mass\_bal} \\ \mathrm{aggregate}\left(\mathrm{conc}\left(\mathrm{soil}.\mathrm{water}.\mathrm{oc}\right)\right) & \text{otherwise}\end{cases}\]

Fluxes

Soil DOC production

Source: out

Target: soil.water.oc

Unit: kg km⁻² day⁻¹

Value:

\[\mathrm{max}\left(0,\, \mathrm{water}\cdot \mathrm{cdoc}\cdot \left(1+\left(\mathrm{kt1}+\mathrm{kt2}\cdot \mathrm{temp}\right)\cdot \mathrm{temp}-\mathrm{kso4}\cdot \mathrm{air}.\mathrm{so4}\right)\right)\]

Soil DOC mineralization+resorption

Source: soil.water.oc

Target: out

Unit: kg km⁻² day⁻¹

Value:

\[\mathrm{oc}\cdot \frac{\mathrm{cdoc}}{\mathrm{basedoc}}\]

Deep soil DOC mineralization

Source: gw.water.oc

Target: out

Unit: kg km⁻² day⁻¹

Value:

\[\mathrm{rate} = \href{stdlib.html#response}{\mathrm{hl\_to\_rate}}\left(\mathrm{gwdochl}\right) \\ \mathrm{oc}\cdot \mathrm{rate}\]

SimplyC river

Version: 0.0.1

File: modules/simplyc.txt

Description

River processes for DOC.

Authors: Magnus D. Norling

External symbols

Name Symbol Type
River river compartment
Groundwater gw compartment
Water water quantity
Organic carbon oc quantity
Temperature temp property

Parameters

Name Symbol Unit Description
DOC river     Distributes like: river
River DOC loss rate at 20°C r_loss day⁻¹  
River DOC loss Q10 r_q10    

State variables

River water DOC

Location: river.water.oc

Unit: kg

Conc. unit: mg l⁻¹

Initial value (concentration):

\[\mathrm{conc}\left(\mathrm{gw}.\mathrm{water}.\mathrm{oc}\right)\]

Fluxes

River DOC loss

Source: river.water.oc

Target: out

Unit: kg day⁻¹

Value:

\[\mathrm{rate} = \href{stdlib.html#response}{\mathrm{q10\_adjust}}\left(\mathrm{r\_loss},\, 20 \mathrm{°C}\,,\, \mathrm{temp},\, \mathrm{r\_q10}\right) \\ \mathrm{oc}\cdot \mathrm{rate}\]

SimplyN

Version: 0.0.5

File: modules/simplyn.txt

Description

This is a simple dissolved inorganic nitrogen (DIN) model. The main assumption in the model is that there is a semi-constant input of DIN to the soil water from deposition and fixation, while loss (plant uptake + denitrification) is temperature-dependent. The latter two are bundled in one single process.

In addition fertilizer can be added at a single day per year. The fertilizer N is added as solid, and dissolves proportionally to the amount of new water (precipitation + snow melt) entering the soil.

Authors: Leah A. Jackson-Blake, Magnus D. Norling

External symbols

Name Symbol Type
Soil soil compartment
Groundwater gw compartment
River river compartment
Water water quantity
Inorganic nitrogen din quantity
Undissolved fertilizer nitrogen sn quantity
Temperature temp property
Total nitrogen tn property

Parameters

Name Symbol Unit Description
DIN universal params      
Soilwater DIN uptake rate at 20°C din_immob_rate m day⁻¹ (name is outdated, should be changed). This represents uptake, immobilisation and denitrification.
Soilwater DIN uptake rate response to 10°C change (Q10) din_immob_q10    
Groundwater DIN computation type gw_conc_type Possible values: const, soil_avg, mass_bal  
Groundwater DIN concentration gw_din_conc mg l⁻¹ Only used if type is const
Reach denitrification rate at 20°C reach_denit_rate day⁻¹  
(Q10) Reach denitrification rate response to 10°C change in temperature reach_denit_q10    
Soil DIN params varying by land use     Distributes like: soil
Initial soilwater DIN concentration sw_din_init mg l⁻¹  
Net annual DIN input to soil net_annual_N_input kg ha⁻¹ year⁻¹ (name outdated, should be changed) These are the gross DIN inputs to soil disregarding fertilizer inputs. Represents atmospheric deposition and fixation.
Fertilizer addition day fert_day day  
Fertilizer N fert_n kg ha⁻¹  
Fertilizer DIN release fert_rel mm⁻¹ Per mm of soil water input (giving less dissolution in dry years)
River DIN     Distributes like: river
Reach effluent DIN inputs eff_din kg day⁻¹  

State variables

Soil undissolved fertilizer N

Location: soil.sn

Unit: kg km⁻²

Soil water DIN

Location: soil.water.din

Unit: kg km⁻²

Conc. unit: mg l⁻¹

Initial value (concentration):

\[\mathrm{sw\_din\_init}\]

Groundwater DIN

Location: gw.water.din

Unit: kg km⁻²

Conc. unit: mg l⁻¹

Value (concentration):

\[\begin{cases}\mathrm{gw\_din\_conc} & \text{if}\;\mathrm{gw\_conc\_type}.\mathrm{const} \\ \mathrm{aggregate}\left(\mathrm{conc}\left(\mathrm{soil}.\mathrm{water}.\mathrm{din}\right)\right) & \text{if}\;\mathrm{gw\_conc\_type}.\mathrm{soil\_avg} \\ \text{(mass balance)} & \text{otherwise}\end{cases}\]

Initial value (concentration):

\[\mathrm{gw\_din\_conc}\]

River water DIN

Location: river.water.din

Unit: kg

Conc. unit: mg l⁻¹

Initial value (concentration):

\[\mathrm{conc}\left(\mathrm{gw}.\mathrm{water}.\mathrm{din}\right)\]

River TN

Location: river.water.tn

Unit: mg l⁻¹

Value:

\[\mathrm{conc}\left(\mathrm{din}\right)\]

Fluxes

Fertilizer N addition

Source: out

Target: soil.sn

Unit: kg km⁻² day⁻¹

Value:

\[\begin{cases}\left(\mathrm{fert\_n}\cdot 1 \mathrm{day}^{-1}\,\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\mathrm{day}^{-1}\,\right) & \text{if}\;\mathrm{time}.\mathrm{day\_of\_year}=\mathrm{fert\_day} \\ 0 & \text{otherwise}\end{cases}\]

Fertilizer DIN release

Source: soil.sn

Target: soil.water.din

Unit: kg km⁻² day⁻¹

Value:

\[\left(\mathrm{soil}.\mathrm{sn}\cdot \mathrm{fert\_rel}\cdot \mathrm{in\_flux}\left(\mathrm{soil}.\mathrm{water}\right)\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\mathrm{day}^{-1}\,\right)\]

Non-agricultural soil water DIN addition

Source: out

Target: soil.water.din

Unit: kg km⁻² day⁻¹

Value:

\[\left(\frac{\mathrm{net\_annual\_N\_input}}{\mathrm{time}.\mathrm{days\_this\_year}}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\mathrm{day}^{-1}\,\right)\]

Soil water DIN uptake

Source: soil.water.din

Target: out

Unit: kg km⁻² day⁻¹

Value:

\[\mathrm{rate} = \href{stdlib.html#response}{\mathrm{q10\_adjust}}\left(\mathrm{din\_immob\_rate},\, 20 \mathrm{°C}\,,\, \mathrm{temp},\, \mathrm{din\_immob\_q10}\right) \\ \left(\mathrm{conc}\left(\mathrm{din}\right)\cdot \mathrm{rate}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\mathrm{day}^{-1}\,\right)\]

River effluent DIN

Source: out

Target: river.water.din

Unit: kg day⁻¹

Value:

\[\mathrm{eff\_din}\]

River DIN denitrification loss

Source: river.water.din

Target: out

Unit: kg day⁻¹

Value:

\[\mathrm{rate} = \href{stdlib.html#response}{\mathrm{q10\_adjust}}\left(\mathrm{reach\_denit\_rate},\, 20 \mathrm{°C}\,,\, \mathrm{temp},\, \mathrm{reach\_denit\_q10}\right) \\ \mathrm{din}\cdot \mathrm{rate}\]

SimplyP

Version: 0.7.0

File: modules/simplyp.txt

Description

SimplyP is a parsimonious phosphorus model. SimplyP models total dissolved phosphorous (TDP) in the soil solution using a equilibrium phosphate concentration at net zero sorption (EPC0) constant. The soil water TDP concentration tends to EPC0 with a speed dependent on a phosphorous sorption coefficient. The non-dissolved phosphorous is tracked as labile phosporous.

If dynamic EPC0 is turned on, the EPC0 will change slowly over time depending on the total amount of labile phosphorous.

For news, updates and references, see the model’s github home page

Technical implementation: The soil TDP mass is described by the ODE equation

\[d(TDPs)/dt = input - kf\cdot m\_soil\cdot (TDPs/water - epc0) - flow\cdot TDPs/water\]

This equation is generally stiff (hence computationally difficult to solve). However, if we assume that flow (soil water flow) and water are approximately constant over the time step, we have an equation on the form

\[d(TDPs)/dt = (input + kf\cdot m\_soil\cdot epc0) - ((kf\cdot m\_soil + flow) / water)\cdot TDPs = a - b\cdot TDPs\]

This has the exact solution

\[TDPs(t) = a/b + (TDPs(0) - a/b) \cdot exp(-b\cdot t),\]

where we can insert t=1 to integrate over the time step. Solving it this way saves time by a factor of about 50-100, and has miniscule error compared to solving it with time-variable water and flow.

Now, the soil labile P mass is described by

\[d(Plab)/dt = kf\cdot m\_soil\cdot ((TDPs/water)-epc0)\]

So

\[Plab(1) = Plab(0) + \int_0^1 kf\cdot m\_soil\cdot ((TDPs(t)/water) - epc0) \mathrm{d}t\]

Again, assuming constant water, the integral will be

\[I = (kf\cdot m\_soil)\cdot ( (1/water)\cdot \int_0^1 TDPs(t)\mathrm{d}t - EPC0) \mathrm{d}t \\ = (kf\cdot m\_soil)\cdot ( (1/water)(a/b + (TDPs(0)-a/b)\cdot (1/b)\cdot (1 - exp(-b)) ) - EPC0) \\ = (kf\cdot m\_soil)\cdot ( (1/(water\cdot b))(a + (TDPs(0) - a/b)(1 - exp(-b)) ) - EPC0)\]

SimplyP was originally implemented in Python and published as

Jackson-Blake LA, Sample JE, Wade AJ, Helliwell RC, Skeffington RA. 2017. Are our dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P. Water Resources Research, 53, 5382–5399. https://doi.org/10.1002/2016WR020132

Changelog

0.6 (First Mobius2 version):

  • The model has been ported to Mobius2. Everything is solved as one large coupled ODE system, so transport between land and river and between different river sections is more precise.

0.4:

  • Landscape units are dynamic and user-specified instead of hardcoded.
  • Sediment and hydrology equations are factored out into separate modules (SimplyQ, SimplySed)

0.3 (First Mobius1 version):

  • More realistic hydrology.

For reference, here is the original Python implementation of SimplyP, which is no longer being developed.

Authors: Leah A. Jackson-Blake, Magnus D. Norling

External symbols

Name Symbol Type
Soil soil compartment
Groundwater gw compartment
River river compartment
Water water quantity
Inorganic phosphorous phos quantity
Labile phosphorous plab quantity
Particles sed quantity
Erosion factor e_fact property
Total phosphorous tp property
Total dissolved phosphorous tdp property
Catchment area a_catch par_real

Parameters

Name Symbol Unit Description
P general      
Dynamic EPC0, TDP and soil labile P dyn_epc0    
Soil mass per m2 m_soil_m2 kg m⁻²  
Phosphorous sorption coefficient kf l mg⁻¹  
Particulate P enrichment factor pp_enrich    
Soil P     Distributes like: soil
Initial soil TDP concentration and EPC0 init_epc0 mg l⁻¹  
Initial total soil P content init_soil_p_conc mg kg⁻¹  
Inactive soil P content inactive_soil_p_conc mg kg⁻¹  
Net annual P input to soil p_input kg ha⁻¹ year⁻¹  
Groundwater P     Distributes like: gw
Groundwater TDP concentration gw_tdp mg l⁻¹  
River P     Distributes like: river
Effluent TDP inputs eff_tdp kg day⁻¹  

State variables

EPC0

Location: soil.epc0

Unit: mg l⁻¹

Value:

\[\mathrm{m\_soil} = \left(\mathrm{m\_soil\_m2}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\right) \\ \begin{cases}\href{stdlib.html#basic}{\mathrm{safe\_divide}}\left(\mathrm{last}\left(\mathrm{plab}\right),\, \mathrm{kf}\cdot \mathrm{m\_soil}\right) & \text{if}\;\mathrm{dyn\_epc0} \\ \mathrm{init\_epc0} & \text{otherwise}\end{cases}\]

Initial value:

\[\mathrm{init\_epc0}\]

Soil DIP mass

Location: soil.water.phos

Unit: kg km⁻²

Conc. unit: mg l⁻¹

Value:

\[\begin{cases}\begin{pmatrix}\mathrm{q} = \left(\mathrm{last}\left(\mathrm{out\_flux}\left(\mathrm{soil}.\mathrm{water}\right)\right)\rightarrow \mathrm{mm}\,\mathrm{day}^{-1}\,\right) \\ \mathrm{days} = \left(\mathrm{time}.\mathrm{step\_length\_in\_seconds}\rightarrow \mathrm{day}\,\right) \\ \mathrm{pin} = \left(\mathrm{p\_input}\cdot \frac{\mathrm{days}}{\mathrm{time}.\mathrm{days\_this\_year}}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\right) \\ \mathrm{m\_soil} = \left(\mathrm{m\_soil\_m2}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\right) \\ \mathrm{a} = \mathrm{pin}+\mathrm{kf}\cdot \mathrm{m\_soil}\cdot \mathrm{epc0} \\ \mathrm{bV} = \mathrm{kf}\cdot \mathrm{m\_soil}+\mathrm{q}\cdot \mathrm{days} \\ \mathrm{b} = \frac{\mathrm{bV}}{\mathrm{last}\left(\mathrm{water}\right)} \\ \frac{\mathrm{a}}{\mathrm{b}}+\left(\mathrm{last}\left(\mathrm{water}.\mathrm{phos}\right)-\frac{\mathrm{a}}{\mathrm{b}}\right)\cdot e^{-\mathrm{b}}\end{pmatrix} & \text{if}\;\mathrm{dyn\_epc0} \\ \left(\mathrm{init\_epc0}\cdot \mathrm{water}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\right) & \text{otherwise}\end{cases}\]

Initial value (concentration):

\[\mathrm{init\_epc0}\]

Soil labile P mass

Location: soil.plab

Unit: kg km⁻²

Value:

\[\begin{cases}\begin{pmatrix}\mathrm{q} = \left(\mathrm{last}\left(\mathrm{out\_flux}\left(\mathrm{soil}.\mathrm{water}\right)\right)\rightarrow \mathrm{mm}\,\mathrm{day}^{-1}\,\right) \\ \mathrm{days} = \left(\mathrm{time}.\mathrm{step\_length\_in\_seconds}\rightarrow \mathrm{day}\,\right) \\ \mathrm{pin} = \left(\mathrm{p\_input}\cdot \frac{\mathrm{days}}{\mathrm{time}.\mathrm{days\_this\_year}}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\right) \\ \mathrm{m\_soil} = \left(\mathrm{m\_soil\_m2}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\right) \\ \mathrm{a} = \mathrm{pin}+\mathrm{kf}\cdot \mathrm{m\_soil}\cdot \mathrm{epc0} \\ \mathrm{bV} = \mathrm{kf}\cdot \mathrm{m\_soil}+\mathrm{q}\cdot \mathrm{days} \\ \mathrm{b} = \frac{\mathrm{bV}}{\mathrm{last}\left(\mathrm{water}\right)} \\ \mathrm{sorp} = \mathrm{kf}\cdot \mathrm{m\_soil}\cdot \left(\frac{1}{\mathrm{bV}}\cdot \left(\mathrm{a}+\left(\mathrm{last}\left(\mathrm{water}.\mathrm{phos}\right)-\frac{\mathrm{a}}{\mathrm{b}}\right)\cdot \left(1-e^{-\mathrm{b}}\right)\right)-\mathrm{epc0}\right) \\ \mathrm{last}\left(\mathrm{plab}\right)+\mathrm{sorp}\end{pmatrix} & \text{if}\;\mathrm{dyn\_epc0} \\ \mathrm{last}\left(\mathrm{plab}\right) & \text{otherwise}\end{cases}\]

Initial value:

\[\left(\mathrm{init\_soil\_p\_conc}-\mathrm{inactive\_soil\_p\_conc}\right)\cdot \mathrm{m\_soil\_m2}\]

Labile P concentration

Location: soil.plab.plabconc

Unit: mg kg⁻¹

Value:

\[\frac{\mathrm{plab}}{\mathrm{m\_soil\_m2}}\]

Groundwater DIP

Location: gw.water.phos

Unit: kg km⁻²

Conc. unit: mg l⁻¹

Value (concentration):

\[\mathrm{gw\_tdp}\]

Initial value (concentration):

\[\mathrm{gw\_tdp}\]

River DIP

Location: river.water.phos

Unit: kg

Conc. unit: mg l⁻¹

Initial value (concentration):

\[\mathrm{gw\_tdp}\]

River PP

Location: river.water.sed.phos

Unit: kg

PP mobilization factor

Location: soil.plab.pp_fact

Unit: kg km⁻² day⁻¹

Value:

\[\left(\left(\mathrm{plabconc}+\mathrm{inactive\_soil\_p\_conc}\right)\cdot \mathrm{e\_fact}\cdot \mathrm{pp\_enrich}\rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\mathrm{day}^{-1}\,\right)\]

River TP

Location: river.water.tp

Unit: mg l⁻¹

Value:

\[\mathrm{conc}\left(\mathrm{phos}\right)+\mathrm{conc}\left(\mathrm{sed}\right)\cdot \mathrm{conc}\left(\mathrm{sed}.\mathrm{phos}\right)\]

River TDP

Location: river.water.tdp

Unit: mg l⁻¹

Value:

\[\mathrm{conc}\left(\mathrm{phos}\right)\]

Fluxes

River effluent DIP

Source: out

Target: river.water.phos

Unit: kg day⁻¹

Value:

\[\mathrm{eff\_tdp}\]

PP mobilization

Source: out

Target: river.water.sed.phos

Unit: kg day⁻¹

Value:

\[\mathrm{a\_catch}\cdot \mathrm{river}.\mathrm{e\_fact}\cdot \mathrm{aggregate}\left(\mathrm{soil}.\mathrm{plab}.\mathrm{pp\_fact}\right)\]

SimplySed

Version: 0.6.0

File: modules/simplysed.txt

Description

This is a simple sediment transport module created as a part of SimplyP.

Erosion is computed as a product of a land erosion factor and a river erosion factor.

The land erosion factor depends on the land slope and the vegetation cover factor. The vegetation cover factor can either be be flat, or can have peaks in spring and autumn (with a user-determined proportion of the size of these peaks), representing plowing.

The erosion factor in the river follows a \((aQ)^b\) - type relationship, where Q is the total runoff from the catchment to the river.

version 0.6:

  • First Mobius2 version.
  • Dynamic vegetation cover is computed a bit differently.

New to version 0.5.1:

  • Updated parameter doc strings

New to version 0.5:

  • Replaced Q - SS input relationship aQ^b with (aQ)^b. Reduces strong correlation/covariance of a and b params.
  • Moved reach slope to be a reach parameter.
  • Remove need for “Arable” land class.
  • Can have dynamic erodibility for all land classes and % spring-sown crops.

Authors: Leah A. Jackson-Blake, Magnus D. Norling

External symbols

Name Symbol Type
Soil soil compartment
River river compartment
Water water quantity
Particles sed quantity
Erosion factor e_fact property
Catchment area a_catch par_real

Module functions

cover_shape(doy, doy_max, len, c_cov, shp_step, shp_tri, shp_smooth) =

\[\begin{cases}\href{stdlib.html#response}{\mathrm{step\_response}}\left(\mathrm{doy},\, \mathrm{doy\_max}-\frac{\mathrm{len}}{2},\, \mathrm{doy\_max}+\frac{\mathrm{len}}{2},\, \mathrm{c\_cov},\, 1,\, \mathrm{c\_cov}\right) & \text{if}\;\mathrm{shp\_step} \\ \href{stdlib.html#response}{\mathrm{wedge\_response}}\left(\mathrm{doy},\, \mathrm{doy\_max}-\frac{\mathrm{len}}{2},\, \mathrm{doy\_max},\, \mathrm{doy\_max}+\frac{\mathrm{len}}{2},\, \mathrm{c\_cov},\, 1,\, \mathrm{c\_cov}\right) & \text{if}\;\mathrm{shp\_tri} \\ \href{stdlib.html#response}{\mathrm{bump\_response}}\left(\mathrm{doy},\, \mathrm{doy\_max}-\frac{\mathrm{len}}{2},\, \mathrm{doy\_max},\, \mathrm{doy\_max}+\frac{\mathrm{len}}{2},\, \mathrm{c\_cov},\, 1,\, \mathrm{c\_cov}\right) & \text{if}\;\mathrm{shp\_smooth} \\ \mathrm{c\_cov} & \text{otherwise}\end{cases}\]

Parameters

Name Symbol Unit Description
Soil erodibility     Distributes like: soil
Vegetation cover factor c_cov   Vegetation cover factor, describing ratio between long-term erosion under the land use class, compared to under bare soil of the same soil type, slope, etc. Source from (R)USLE literature and area-weight as necessary to obtain a single value for the land class.
Day of year when soil erodibility is max for spring-grown crops doy_spring day  
Day of year when soil erodibility is max for autumn-grown crops doy_autumn day  
Proportion of spring-grown crops p_spring    
Reduction of load in sediment loadred    
Cover factor shape shp Possible values: flat, step, triangular, smooth  
Land slope     Distributes like: soil
Mean slope of land land_slope °  
River erosion     Distributes like: river
Erosion scaling factor ksed day mm⁻¹  
Erosion power factor psed    

State variables

Variable reduction of load in sediments

Location: soil.loadred_var

Unit:

This series is externally defined. It may be an input series.

Suspended sediments

Location: river.water.sed

Unit: kg

Conc. unit: mg l⁻¹

Time dependent vegetation cover factor

Location: soil.c_cover

Unit:

Value:

\[\mathrm{E\_risk\_period} = 60 \mathrm{day}\, \\ \mathrm{spring} = \mathrm{cover\_shape}\left(\mathrm{time}.\mathrm{day\_of\_year},\, \mathrm{doy\_spring},\, \mathrm{E\_risk\_period},\, \mathrm{c\_cov},\, \mathrm{shp}.\mathrm{step},\, \mathrm{shp}.\mathrm{triangular},\, \mathrm{shp}.\mathrm{smooth}\right) \\ \mathrm{autumn} = \mathrm{cover\_shape}\left(\mathrm{time}.\mathrm{day\_of\_year},\, \mathrm{doy\_autumn},\, \mathrm{E\_risk\_period},\, \mathrm{c\_cov},\, \mathrm{shp}.\mathrm{step},\, \mathrm{shp}.\mathrm{triangular},\, \mathrm{shp}.\mathrm{smooth}\right) \\ \mathrm{spring}\cdot \mathrm{p\_spring}+\mathrm{autumn}\cdot \left(1-\mathrm{p\_spring}\right)\]

Erosion factor land

Location: soil.e_fact

Unit: kg km⁻² day⁻¹

Value:

\[\left(\mathrm{land\_slope}\cdot \mathrm{c\_cover}\cdot \left(1-\mathrm{loadred}\right)\cdot \left(1-\mathrm{loadred\_var}\right)\Rightarrow \mathrm{kg}\,\mathrm{km}^{-2}\,\mathrm{day}^{-1}\,\right)\]

Erosion factor river

Location: river.e_fact

Unit:

Value:

\[\left(\mathrm{ksed}\cdot \frac{\mathrm{in\_flux}\left(\mathrm{water}\right)}{\mathrm{a\_catch}}\rightarrow 1\right)^{\mathrm{psed}}\]

Fluxes

Sediment mobilization

Source: out

Target: river.water.sed

Unit: kg day⁻¹

Value:

\[\mathrm{a\_catch}\cdot \mathrm{aggregate}\left(\mathrm{soil}.\mathrm{e\_fact}\right)\cdot \mathrm{river}.\mathrm{e\_fact}\]

© Norsk Institutt for Vannforskning (The Norwegian Institute for Water Research), NIVA 2024.